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One-Loop Quantum Corrections to
Thermodynamics of Black Holes with Global
Monopoles
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Quantum corrections are studied for a black hole with a global monopole charge
in a 2D model obtained by spherisymmetri c reduction of the 4D action. The
backreaction of the Hawking radiation on the geometry is studied perturbatively
for conformal matter. It is shown that the metric and the position of horizon
change by an amount of order " . Within the off-shell approach the one-loop
thermodynamic quantities, energy, and entropy are found. They are shown to
contain two parts, one due to the hole itself and one to the hot gas surrounding
it. The deviation of the quantum-correc ted entropy from the classical one is given.

1. INTRODUCTION

Hawking [1] gave the Bekenstein±Hawking (BH) entropy of a black

hole: one fourth of the area of the horizon. In processes involving a black

hole, its entropy plays a role on an equal footing with the entropy of conven-

tional matter.

The role of quantum effects in black hole physics is twofold. The

backreaction of the Hawking radiation field will deform the classical black
hole geometry, which was not considered by Hawking. On the other hand,

the quantum correction leads to modification of the gravitational effective

action, and hence of the energy and entropy.

The formal derivation of the thermal properties of a black hole is per-

formed in the framework of the Euclidean approach initiated by Gibbons and

Hawking [2, 3] which entails closing the Euclidean time coordinate with a
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period 2 p b 5 T 2 1. In the black hole case for arbitrary b this procedure leads

to an effective Euclidean manifold which has a conical singularity at the

horizon that vanishes for a fixed value b 5 b H. Thermodynamic quantities
are calculated by differentiating the corresponding free energy F with respect

to b and then setting b 5 b H [4±6].

The well-known two-dimensional (2D) Polyakov±Liouville(PL) action

[7] for conformal matter incorporates both the Hawking radiation [8] and its

backreaction on the geometry (see, e.g. ref. 9). Therefore, its inclusion in

the action on an equal footing with the classical counterpart gives the complete
semiclassical description to the black hole. Besides the famous ª string-

inspiredº 2D CGHS model [10] and improved RST model [11], the spherisym-

metric reduction of 4D Einstein theory to an effective 2D theory of dilaton

type [12±14] allows one to find the corresponding quantum deformation of

the classical Schwarzschild configuration [14].

A monopole is a type of defect arising from phase transitions in the
early universe. Barriola and Vilenkin (BV) [15] found a monopole solution

resulting from the spontaneous breaking of symmetry. The spacetime of a

global monopole asymptotes to a locally flat spacetime with a deficit solid

angle of 8 p G h [15]. Putting global charge onto the Schwarzschild black

hole will amount to breaking the vacuum and asymptotic flatness. Classical
thermodynamics of black holes with global monopoles is studied in ref. 16.

In this paper we use the 2D model to study the one-loop quantum effects

in the thermodynamics of a black hole with global monopole charge, including

the backreaction effects [6, 17, 18]. Reducing the 4D classical action spheri-

cally to an effective 2D one, we obtain the BV monopole solution (which

can describe black holes with internal global monopoles), and reformulate
the thermodynamics of the classical black hole in the framework of the

conical singularity method. We use the PL action for the conformal quantized

field and calculate the deformation of the geometry and the quantum-corrected

energy and entropy of the black hole.

2. SPHERICALLY SYMMETRIC REDUCTION OF 4D THEORY

The 4D Einstein gravity coupled with a monopole is described by the

action with the boundary term [2]

Wcl 5 2
1

16 p G # M4
R(4) 1 # M 4

L 2
1

8 p G # - M4
K (4) (2.1)

where R (4) is the 4D scalar curvature. K (4) 5 n m
; m is the trace of the extrinsic

curvature of the boundary - M 4 and n m is the outward unit vector normal to

- M 4. The simplest Lagrangian that gives global monopoles is [15]
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L( c i) 5
1

2
c i

; m c i; m 1
l
4

( c i c i 2 h 2)2 (2.2)

where c i (i 5 1, 2, 3) is the isoscalar triplet of real fields, and h is the energy
scale of the symmetry breaking. This model has a global O(3) symmetry

which is spontaneously broken to a global U(1) symmetry by a choice of

vacuum ) c i ) 5 h . The action (2.1) and the one-loop effective action are

divergent when the boundary - M goes to infinity, which requires some sub-

traction procedure [19]:

Wsub 5 W [g m n ] 2 W [g0
m n ] (2.3)

where g0
m n is a specially chosen background metric which is nonflat in general.

We consider the spherically symmetric metric

ds2 5 g a b (z) dz a dz b 1 r 2(z)(d u 2 1 sin2 u d w 2) (2.4)

where a , b , . . . 5 0, 1, g a b (z) is the 2D metric on the effective 2D space

M 2 covered by coordinates z a 5 ( t , x), and r 2(z) is the scalar field. For the

boundary, - M 4 5 - M 2 3 S 2 and n m 5 (n a , 0, 0). Accordingly, the spherically

symmetric field configuration describing a monopole may be written as

c i 5 h f (r)xÃi (2.5)

where xÃi is the unit radial vector in the internal space.

After complicated calculations, we find that the action (2.2) reduces to

the effective 2D theory

Wcl 5
1

4G # M2 F 2 r 2R 2 2( ¹ r)2 2 2 1 e r 2( ¹ f )2 1 2 e f 2

1
1

2
p e r 2( f 2 2 1)2G 2

1

2G # - M 2
kr 2 (2.6)

(with e 5 8 p G h 2, p 5 l h 2) where all the geometrical objects R, ¹ , k are

defined with respect to the 2D space M 2 and the field r 2(z) plays the role of

the dilaton field. Variations of the action (2.6) with respect to the dilaton r 2,

f, and metric g a b give, respectively,

rR 2 2Mr 2 e r( ¹ f )2 2
1

2
p e r( f 2 2 1)2 5 0 (2.7)

2 2r g a b r, a f, b 2 r 2M f 1 2f 1 pr 2f ( f 2 2 1) 5 0 (2.8)

G a b 5 2 rr; a b 2
1

2
e r 2f, a f, b 1

1

2
g a b [Mr 2 2 ( ¹ r)2 2 1
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1
1

2
e r 2( ¹ f )2 1 e f 2 1

1

4
p e r 2( f 2 2 1)2] 5 0 (2.9)

If the metric is of the form

ds2 5 B(r) d t 2 1
1

A(r)
dr 2 (2.10)

(2.7) and (2.8) become

2 r ! A

B 1 ! A

B
B8 2 8 2 2 ! A

B
( ! AB)8 2 e Arf 82 2

1

2
p e r( f 2 2 1)2 5 0(2.11)

2 2Arf 8 2 r 2 ! A

B
( ! ABf 8)8 1 2f 1 pr 2f ( f 2 2 1) 5 0 (2.12)

and the ( t t ) and (rr) components of (2.9) are

2 rA8 1 1 2 A 5 e f 2 1
1

2
e Ar 2f 82 1

1

4
p e r 2( f 2 2 1)2 (2.13)

rAB8

B
2 1 1 A 5 2 e f 2 1

1

2
e Ar 2f 82 2

1

4
p e r 2( f 2 2 1)2 (2.14)

from which we have

B8

B
2

A8

A
5 F ln 1 B

A 2 G 8
5 e rf 82 (2.15)

Note that f (r) , 1 2 (1/pr 2) as r ® ` because of (2.11). So f 8 ’ 0 and we

obtain from (2.15) that B/A 5 C. Redefining r, we can choose C 5 1. It

follows from (2.11) or (2.12) that

B 5 A 5 1 2 e 2
2GM

r
(2.16)

where M is a constant of integration, the ADM mass of the monopole, which

is negative. On the other hand, the metric (2.16) with a large value of M
describes a black hole of mass M carrying a global monopole charge [15],
which we are going to study. Such a black hole can be formed if a global

monopole is swallowed by an ordinary black hole.

3. TREE-LEVEL BLACK HOLE THERMODYNAMICS

The Euclidean action (2.6) is the starting point for the formulation of

the classical thermodynamic properties of the black hole. The standard proce-
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dure for describing the thermodynamic properties of a field system is to go

to the Euclidean space by a Wick rotation t 5 i t and to close the t direction

with period 2 p b 5 T 2 1, where T is the temperature of the system. The

system is assumed to be contained in a box of size L. In principle the field

configuration does not necessarily satisfy any field equations. The latter

arise as a requirement of extremality of the free energy functional under

appropriately defined boundary conditions.

Analogously the thermodynamics of black holes can be formulated off-

shell. Consider the Euclidean static metric of the general type

ds2 5 g(x) d t 2 1
e 2 2 l (x)

g(x)
dx2 (3.1)

where 0 # t # 2 p b , x+ # x # L, and x 5 x+ is the location of the horizon.

A nonextremal black hole requires that at the horizon x 5 x+ the function

g(x) has a simple zero. Changing the variable x to r so that

d r 5
dx

! g(x)e l (x)
(3.2)

we see that, in the vicinity of the horizon, the metric becomes

ds2 5 d r 2 1 a 2 r 2 d f 2 (3.3)

where a 5 b / b H, b H 5 2/g8xe
l ) x 5 x 1 , and f 5 t / b . Hence the metric (3.1)

describes the Euclidean space with conical singularity at the horizon with

angle deficit d 5 (1 2 a )2 p , which vanishes when a 5 1. This implies that

the scalar curvature is of the form [20]

R 5 4 p (1 2 a ) d S 1 R (3.4)

where * M a d S 5 1, * M a d S f 5 f S ( f S is the value of f on horizon S ), and R

is the regular part.

The system is specified by fixing (1) the temperature T and values of

fB and rB on the external boundary and (2) the black hole topology (i.e.,

nonextremal case), while all the functions (g, l , r, f ) and the values of r+ 5
r(x+), g8(x+) (or b H [ 2e 2 l /g8x ) x 5 x 1 ) are variable. Thus, our approach includes

both the regular and conically singular ( a Þ 1) metric (in other words the

calculations are done off-shell), while in ref. 21 only regular metrics are

considered. For a metric with an arbitrary a the classical action (2.6) due to

(3.4) takes the form



2554 Yibin and Jing

Wcl 5
1

4G # M

[ 2 r 2R 2 2( ¹ r)2 2 2 1 e r 2( ¹ f )2 1 2 e f 2

1
1

2
p e r 2( f 2 2 1)2] 2

1

2G # - M

r 2k(2) 2
p r 2

1

G
(1 2 a ) (3.5)

For the static metric (3.1), the action (3.5) becomes

Wcl 5
p b
G #

L

x 1

[ 2 g8xe
l rr8 2 ge l r 82 2 e 2 l 1

1

2
e r 2ge l f 82

1 e 2 l e f 2 1
1

4
e 2 l p e r 2( f 2 2 1)2] dx 2

p r 2
1

G
(3.6)

One can define the free energy F, entropy S, and energy E associated with
Wcl as

F 5 (2 p b ) 2 1Wcl, S 5 ( b - b 2 1)Wcl, E 5
1

2 p
- b Wcl (3.7)

where 2 p b 5 T 2 1 and b 5 b g1/2
B . Hence we have for the energy E

E 5
1

2Gg1/2
B #

L

x 1 F 2 1

2
(r 2)8e l g8 2 ge l (r 8x)

2 2 e 2 l

1
1

2
e r 2ge l f 82 1 e 2 l e f 2 1

1

4
e 2 l p e r 2( f 2 2 1)2G dx (3.8)

and for the entropy

SBH 5
p r 2

1

G
(3.9)

which takes the standard BH form. Now we fix the temperature T and consider

the extremum of the free energy F 5 E 2 TS or equivalently that of the

action Wcl. Such an equilibrium configuration automatically satisfies the

second law of black hole thermodynamics:

d E 5 T d S (3.10)

The total variation of the action Wcl is d Wcl 5 d rWcl 1 d gWcl 1 d l Wcl 1
d fWcl. For partial variations we have
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d rWcl 5
2 p r(x+)

G
(1 2 a ) d r(x+) 1

p b
G #

L

x 1 F 2 g8xe
l r8 1 (g8xe

l r)8

1 2(ge l r8)8 1 e rge l f 82 1
1

2
e 2 l p e r( f 2 2 1)2G d r dx (3.11)

d fWcl 5
p b
G #

L

x 1

[ 2 ( e r 2ge l f 8)8 1 2e 2 l e f 1 e 2 l p e r 2f ( f 2 2 1)] d f dx (3.12)

d gWcl 5
p b
G #

L

x 1 F (e l rr8)8 2 e l r 82 1
1

2
e r 2e l f 82] d g dx (3.13)

d l Wcl 5
p b
G #

L

x 1

[ 2 g8xe
l rr8 2 ge l r 82 1 e 2 l 1

1

2
e r 2e l gf 82

2 e 2 l e f 2 2
1

4
e 2 l p e r 2( f 2 2 1)2G d l dx (3.14)

These lead to four equations of motion which of course coincide with (2.7)±

(2.9) written for the metric(3.1). Moreover, the requirement d rWcl 5 0 gives

the condition a 5 1. It means that the equilibrium state is reached on a

regular manifold without conical singularity (Gibbon±Hawking instanton).
Using the last two equations of motion resulting from (3.13) and (3.14),

the energy functional E of (3.8) reduces to the surface terms only:

E 5 Esurf 5 2 ! ge l rr8 ) x 5 L (3.15)

Equivalently, we obtain a coordinate-invariant expression for the energy

(3.15):

E 5 2
1

2 p b G # - M

rn a r, a (3.16)

The subtraction procedure described in Section 2 leads to the result

E 5 E[g] 2 E[g0]

5
1

G 1 1

2 p b 0 # - M

rn a
0r, a 2

1

2 p b # - M

rn a r, a 2
5

1

G
[r(g1/2

0 2 g1/2)]r 5 L (3.17)

where we chose r0 5 r for the reference metric. Note that the natural condition
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to be imposed on the background is that in the limit L ® ` the background

temperature T 5 (2 p b 0)
2 1 coincides with the black hole temperature mea-

sured at infinity. This is satisfied if g0 5 limL ® ` g(L). For the monopole case
(2.16), we have g0 5 1 2 e . Hence for the energy we find in the limit

L ® ` that

E 5 M/ ! 1 2 e (3.18)

4. QUANTUM-CORRECTED BLACK HOLE GEOMETRY

In the semiclassical approximation the one-loop quantum effects are

taken into account by adding to the classical action the quantum counterpart

obtained by integrating out the matter fields:

W 5 Wcl 1 G (4.1)

We take the classical part Wcl to have the form (2.6), while the one-loop
contribution G is the nonlocal PL action [7] G PL[g] 5 (1/96 p ) * RN 2 1R for

a 2D quantum conformal massless scalar field. Adding to it the boundary

terms to specify the state of the quantum field, and considering the conical

singularity on the horizon, the PL action becomes [18]

G [M a ] 5
1

48 p # M a F 12 ( ¹ c )2 1 c RG 1
1

24

(1 2 a )2

a
c h

1
1

24 p # - M a

k c 1
1

16 p # - M a

n m c , m 1 G 0 (4.2)

where c (x) is the solution of the equation N c 5 R [ 4 p (1 2 a ) d S 1 R.

We first study the corrections to the classical geometry of the black hole

induced by quantum corrections to the action (4.1). Variation of (6.1) with

respect to the metric gives the equations

G a b 5 2 T a b (4.3)

T a b 5
k
2 H 2 c ; a b 2 c , a c , b 2 g a b F 2R 2

1

2
( ¹ c )2G J (4.4)

where G a b is given by (2.9) and k 5 G/24 p , while variations with respect

to the dilaton field r 2(x) and f (x) give the same equations as in the classical

case [see (2.7) and (2.8)].

Note that, comparing the trace of (4.3),
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Nr 2 2 2 1 2 e f 2 1
1

2
p e r 2( f 2 2 1)2 5 2 k R (4.5)

with (2.7) and (2.8) we obtain for the curvature

R 5
2 2 2( ¹ r)2 1 e r 2( ¹ f )2 2 2 e f 2

r 2 2 2 k
(4.6)

which implies that the spacetime singularity now is placed at finite radius

(value of the dilaton) r 2 5 r 2
cr [ 2 k . This typically happens in 2D models

of gravity, as has been previously observed [12, 14, 22]. Hence we assume
that the horizon lies at r+

À rcr . Then, in the region r $ r+ we may solve

(4.3), (2.7), and (2.8) perturbatively (with respect to rcl/r+) considering T a b

in the right-hand side of (4.3) as a small perturbation and take them on the

classical background. This gives the correction to the black hole geometry

to first order in the Planck constant " .

As earlier we consider a static solution:

ds2 5 C(r) d t 2 1
dr 2

D(r)
(4.7)

Then (4.3), (2.7), and (2.8) become

2 rD8 2 D 1 1 2 e f 2 2
1

2
e Dr 2f 82 2

1

4
p e r 2( f 2 2 1)2 5 2T t

t (4.8)

rDC 8

C
1 D 2 1 1 e f 2 2

1

2
e Dr 2f 82 1

1

4
p e r 2( f 2 2 1)2 5 2 2T r

r (4.9)

2 r ! D

C 1 ! D

C
C 8 2 8 2 2 ! D

C
( ! CD)8 2 e Drf 82 2

1

2
p e r( f 2 2 1)2 5 0 (4.10)

2 2Drf 8 2 r 2 ! D

C
( ! CDf 8)8 1 2f 1 pr 2f( f 2 2 1) 5 0 (4.11)

It follows from (4.8) and (4.9) that

1 ln
C

D 2 8 2 e rf 82 5
2(T t

t 2 T r
r)

Dr
(4.12)

Setting D 5 1 2 e 2 2M(r)G/r, we have from (4.8)

2GM 8 2 e ( f 2 2 1) 2
1

4
p e r 2( f 2 2 1)2 2

1

2
e Dr 2f 82 5 2T t

t (4.13)

At the classical level, the stress tensor T a b of (4.4) reads
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T t
t 5 k F g9 2

1

4g
(g82 2 (g81 )2)G

T r
r 5

k
4g

(g82 2 (g81 )2) (4.14)

where g 5 1 2 e 2 2MG/r 5 (1 2 e )(1 2 r+ /r) and r+ 5 2MG/(1 2 e ).

To second order in r 2 1, we have

T t
t ’

k (1 2 e )

4r 2
1 1 1 1

r+

r
1

r 2
1

r 2 2
T r

r ’ 2
k (1 2 e )

4r 2
1 1 1 1

r+

r
1

r 2
1

r 2 2 (4.15)

Now we assume that f still behaves like 1 2 (1/pr 2) asymptotically and f 8 ’
0, which can be justified at the end. Then, from (4.13) we have, to first order

in r 2 1,

GM(r) ’ # T t
t dr ’ GM 1 k m(r) (4.16)

where

m(r) 5
1 2 e

4 1 r

r 2
1

1
1

r+

ln
r

l 2 (4.17)

We have introduced a distance l in order to have dimensionless quantities

under the logarithms. So D becomes, to r 2 1,

D 5 1 2 e 2
2[MG 1 k m(r)]

r

5 (1 2 e ) 1 1 2
k

2r 2
1 2 2

k (1 2 e )

2r+r
ln

r

l
2

2MG

r
(4.18)

Setting

C(r) 5 D(r)e F (r) (4.19)

we have from (4.12) that

F 8 ’
k
r 2

1 1 1

r
1

2r+

r 2 2
3r 2

1

r 3 2
Imposing on F (r) the condition F (L) 5 0, we get
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F (r) 5 k [F(L) 2 F(r)] (4.20)

where

F(r) 5
2

r+r
1

3

2r 2 2
1

r 2
1

ln
r

l
(4.21)

Setting D(r) 5 0, we find that the deformed horizon is now located at

r+ 5
2(MG 1 k m(r+))

1 2 e
’

2(MG 1 k m(r+))

1 2 e
5 r+ 1

2 k
1 2 e

m(r+) (4.22)

So, due to quantum effects, r+ is changed by

2 k
1 2 e

m(r+) 5
k

2r+

(1 1 ln
r+

l
) (4.23)

5. QUANTUM CORRECTIONS TO BLACK HOLE
THERMODYNAMICS

Our approach to the one-loop thermodynamics described by the action

W (4.1) is essentially the same as in the tree-level approximation considered
in Section 3. We fix rB , fB , and T 5 (2 p b ) 2 1 on the boundary x 5 L and

the black hole topology, and define the off-shell entropy and energy by

the relations

S 5 ( b - b 2 1)W, E 5
1

2 p
- b W (5.1)

Taking the Euclidean static metric in the form (3.1), we find that the extremum

of the functional W[g(x), r(x), l (x), f (x)] as in the classical case is attained
on the regular manifold, where now r(x+) 5 r+ [see (3.11)].

Calculating the off-shell quantities (5.1), it is convenient to write the

metric in the Schwarzschild-like form:

ds2 5 g(x) d t 2 1 g 2 1(x) dx2 (5.2)

where 0 # t # 2 p b . The quantum-corrected metric found in Section 4 takes

this form by means of the coordinate transformation r ® x(r), x8r 5 e F (r) and

identification g(x) 5 De2 F . Then c (x) takes the form

c M a (x) 5 2 ln g(x) 2
2

b #
L

x

dx

g(x)
2 2 ln

b H

z0

1 C( a , z0) (5.3)

where z0 is the proper generator length of the cone conformal to M a . The

PL action G of (4.2) reads [18]
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G [g] 5
1

24 #
L

x 1 1 2

b g
2

b
2

g82

g 2 dx 1
1

12 1 a 1
(1 2 a 2)

2 a 2 c (x+)

2
b
8

g8(L) 1 G 0 (5.4)

where G 0 is a conformally invariant functional. It should be noted that (5.4)

is divergent at the lower limit. Taking the regularization x+ ® x+ 1 d , we
have, for the divergent part of (5.4),

G div 5 ln d
(1 2 a )2

24 a 2 (5.5)

Note that G div is proportional to (1 2 a )2 and does not affect physical quantities
calculated at the Hawking temperature ( b 5 b H).

For the equilibrium state ( b 5 b H), E 5 Ecl 1 Eq, where the classical

part Ecl takes the form (3.8) and the quantum part reads

Eq 5
1

2 p
- b G ) b 5 b H 5

1

96 p ! g(L) #
L

x 1

1

g 1 4

b 2
H

2 g82(x) 2 dx 2
1

16 p g1/2(L)
g8(L)

(5.6)

which is free of divergence at the lower limit. For the quantum-corrected
metric, g8(L) vanishes in the limit L ® ` . Therefore we neglect such a

term below.

Using the equations of motion, we get

E 5 Esurf 1
T

6
5 2

T

G # - M

rn a r, a 1
T

6
5 2

1

G
rg1/2 ) r 5 L 1

T

6
(5.7)

Note that both terms in (5.10) are defined on the external boundary r 5 L.

Subtracting now the energy of the background g0, we obtain

E [g] 2 E[g0] 5
1

G
r(g1/2

0 2 g1/2) ) r 5 L 1
1

6
(T 2 T0) (5.8)

where T0 5 [2 p b 0
H g1/2

0 (L)] 2 1 is the temperature of the background metric.

The temperature T 5 1/2 p b H ! g(L) in (5.7), though measured at the external

boundary, originates from the horizon [when one integrates by parts in passage
from (5.6) to (5.7)], and is a consequence of the black hole topology. In the

non-black-hole case (hot space) this term is absent. Taking T0 5 T, we get

the classical expression (3.17), but now g and g0 are the corresponding

quantum-corrected metrics.

For the quantum-corrected solution (4.18), we have



Thermodynamics of Black Holes with Global Monopoles 2561

g(L) 5 D(L) e F (L) 5 (1 2 e ) 1 1 2
k

2r 2
1 2 2

2MG

L
2

k (1 2 e )

2r+L
ln

L

l
(5.9)

We see that in the limit L ® ` , g(L) ® g0 5 (1 2 k /2r 2
1 )(1 2 e ) rather than

to (1 2 e ). Introducing the Planck temperature TPl 5 (2 p rcr)
2 1, we can rewrite

this as g0 5 1 2 e 2 (TH/Tpl)
2/(1 2 e ). We see that the modification of the

asymptotic behavior of g and of the background is essentially due to tempera-

ture effects. Indeed, if we were to take the background g0 5 1 2 e as in the

classical case and apply (5.8) for the metric (5.9), we would obtain for the

energy the divergent term Eth 5 p LT 2
H /6(1 2 e )3/2, which is the energy of

the hot gas surrounding the black hole. Hence, the system under consideration

includes two objects: the black hole and hot gas. Extensive characteristics

(such as energy or entropy) contain different contributions due to these two

subsystems. The contribution of the hot gas depends on the size of the system

L, while the contribution of the hole itself does not.

Choosing g0 5 (1 2 k /2r 2
1 )(1 2 e ), we get for the energy

E 5
M

! 1 2 e
1

k M h

4r 2
1 ! 1 2 e

5
M

1 2 e F 1 1
1

2 1 TH

TPl 2
2

h
(1 2 e )2G (5.10)

where h 5 1 1 2 ln(L/l). We see that the contribution E th of the hot gas

disappears. However the logarithmically infrared divergent term is still present

and will be absent when massive matter is considered.

Analogously, we have for the entropy in the equilibrium state

S 5
p r 2

1

G
1 Sq (5.11)

where

Sq 5 ( b - b 2 1) G ) b 5 b H 5 2
1

12
c (x+)

5
1

12 #
L

x 1

dx

g(x) 1 2

b H

2 g8(x) 2 1
1

6
ln

b Hg1/2(L)

z0

1 c(z0) (5.12)

Note that Sq is also free of divergence. For a metric written in the conformally
flat form g m n 5 e2 s d m n , we have c (x) 5 2 2 s (x) and the entropy (5.12)

coincides with that previously obtained [20, 23].

Substituting the classical metric function gcl(r) 5 (1 2 e )(1 2 r+ /r) into

the expression for Sq (which is really of the order " ), we find that
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Sq 5
p
3

TH
L 2 r+

1 2 e
1

1

12
ln

L 2 r+

r+

1
1

6
ln

2r+

z0 ! 1 2 e
(5.13)

which is divergent in the limit L ® ` . The first linearly divergent term is

the entropy Sth of the 2D hot gas, and should be subtracted.

Taking r+ instead of r+ in Sq , we derive the complete quantum entropy

of the hole when L ® ` :

S 5
p r 2

1

G
1

1

12
ln

L

r+

1
1

6
ln

2r+

z0 ! 1 2 e
(5.14)

It can be rewritten in the form

S 5
A+

4G
1

1

12
ln

A+

p z2
0(1 2 e )

(5.15)

where A+ 5 4 p r2
1 is the area of the horizon and we omitted a term } ln(L/

r+). This result is similar to that obtained in ref. 5 for the 4D Schwarzschild
black hole.

6. CONCLUSION

The classical spacetime of black holes with global monopoles is

described by the BV metric, but the backreaction of the conformal matter

alters the metric and changes the position of the horizon. The equilibrium

state of the black hole requires a regular manifold without conical singularity

( a 5 1). So does that of the quantum-corrected hole. The classical entropy
takes the BH form, but the quantum-corrected one contains an additional

logarithmic term. Moreover, both energy and entropy contain two parts, one

due to the hot gas and one to the hole itself, and the hot-gas part can be

eliminated by choosing the reference metric appropriately.
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